

24-Bit, 192kHz Stereo ADC

DESCRIPTION

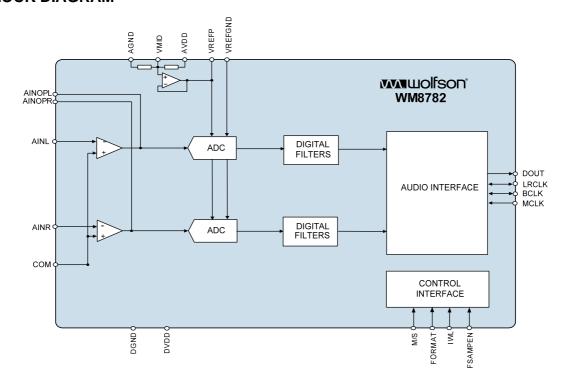
The WM8782 is a high performance, low cost stereo audio ADC designed for recordable media applications.

The device offers stereo line level inputs along with two control input pins (FORMAT, IWL) to allow operation of the audio interface in three industry standard modes. An internal op-amp is integrated on the front end of the chip to accommodate analogue input signals greater than $1V_{\rm rms}.$ The device also has a high pass filter to remove residual DC offsets.

WM8782 offers Master or Slave mode clocking schemes. A control input pin M/S is used to allow Slave mode operation or Master mode operation. A stereo 24-bit multibit sigma-delta ADC is used with 128x, 64x or 32x oversampling, according to sample rate. Digital audio output word lengths from 16-24 bits and sampling rates from 8kHz to 192kHz are supported.

The device is a hardware controlled device and is supplied in a 20-lead SSOP package.

The device is available over a functional temperature range of -40°C to +85°C


FEATURES

- SNR 100dB ('A' weighted @ 48kHz)
- THD -93dB (at –1dB)
- Sampling Frequency: 8 192kHz
- Master or Slave Clocking Mode
- System Clock (MCLK): 128fs, 192fs, 256fs, 384fs, 512fs, 768fs
 - Audio Data Interface Modes
- 16-24 bit I²S, 16-24 bit Left, 16-24 bit Right Justified
- Supply Voltages
 - Analogue: 2.7 to 5.5V
 - Digital core: 2.7V to 3.6V
- 20-lead SSOP or 20-lead TSSOP package
- Accelerated Lifetime Screened Devices available.

APPLICATIONS

- Recordable DVD Players
- Personal Video Recorders
- STE
- Studio Audio Processing Equipment
- Automotive

BLOCK DIAGRAM

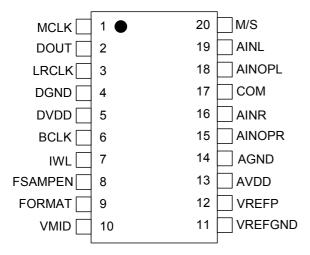


TABLE OF CONTENTS

DESCRIPTION	. 1
FEATURES	
APPLICATIONS	. 1
BLOCK DIAGRAM	. 1
TABLE OF CONTENTS	. 2
PIN CONFIGURATION	. 3
ORDERING INFORMATION	. 3
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	. 5
THERMAL PERFORMANCE	. 5
RECOMMENDED OPERATING CONDITIONS	. 6
ELECTRICAL CHARACTERISTICS	. 6
TERMINOLOGY	7
SIGNAL TIMING REQUIREMENTS	. 8
SYSTEM CLOCK TIMING	
AUDIO INTERFACE TIMING – MASTER MODE	
AUDIO INTERFACE TIMING – SLAVE MODE	
SLAVE MODE MCLK / BCLK TIMING	
DEVICE DESCRIPTION	
INTRODUCTION	
ADCADC DIGITAL FILTER	
DIGITAL AUDIO INTERFACE	
POWER ON RESET	
DIGITAL FILTER CHARACTERISTICS	
ADC FILTER RESPONSES	
ADC HIGH PASS FILTER	
APPLICATIONS INFORMATION	19
RECOMMENDED EXTERNAL COMPONENTS	
RECOMMENDED EXTERNAL COMPONENTS VALUES	
PACKAGE DIMENSIONS	
20 PIN SSOP	
20 PIN TSSOP	
IMPORTANT NOTICE	
ADDRESS:	21

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8782SEDS/V	-40°C to +85°C	20-lead SSOP (Pb-free)	MSL2	260°C
WM8782SEDS/RV	-40°C to +85°C	20-lead SSOP (Pb-free, tape and reel)	MSL2	260°C

Note:

Reel quantity = 2,000

WM8782

Production Data

PIN DESCRIPTION

	NAME	TYPE	DESCRIPTION
PIN NO.			
1	MCLK	Digital Input	Master Clock
2	DOUT	Digital Output	ADC Digital Audio Data
3	LRCLK	Digital Input / Output	Audio Interface Left / Right Clock
4	DGND	Supply	Digital Negative Supply
5	DVDD	Supply	Digital Positive Supply
6	BCLK	Digital Input / Output	Audio Interface Bit Clock
7	IWL	Digital Tristate Input	Word Length
			0 = 16 bit
			1 = 20 bit
			Z = 24 bit
8	FSAMPEN	Digital Tristate Input	Fast Sampling Rate Enable
			0 = 48kHz
			1= 96kkHz
			Z= 192kHz
9	FORMAT	Digital Tristate Input	Audio Mode Select
			0 = RJ
			1 = LJ
			Z = 12S
10	VMID	Analogue Output	Mid rail Voltage Decoupling Capacitor
11	VREFGND	Supply	Negative Supply and Substrate Connection
12	VREFP	Analogue Output	Positive Reference Voltage Decoupling Pin; 10uF external decoupling
13	AVDD	Supply	Analogue Positive Supply
14	AGND	Supply	Analogue Negative Supply and Substrate Connection
15	AINOPR	Analogue Output	Right Channel Internal Op-Amp Output
16	AINR	Analogue Input	Right Channel Input
17	COM	Analogue Input	Common mode high impedance input should be set to midrail.
18	AINOPL	Analogue Output	Left Channel Internal Op-Amp Output
19	AINL	Analogue Input	Left Channel Input
20	M/S	Digital Input	Interface Mode Select
			0 = Slave mode (128fs, 192fs, 256fs, 384fs, 512fs, 768fs)
			1 = Master mode (256fs, 128fs)
			(fs=word clock frequency)

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level is specified in Ordering Information.

CONDITION	MIN	MAX
Digital supply voltage	-0.3V	+4.5V
Analogue supply voltage	-0.3V	+7V
Voltage range digital inputs	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Ambient temperature (supplies applied)	-55°C	+125°C
Storage temperature	-65°C	+150°C
Pb free package body temperature (reflow 10 seconds)		+260°C
Package body temperature (soldering 2 minutes)		+183°C

Notes:

1. Analogue and digital grounds must always be within 0.3V of each other.

THERMAL PERFORMANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Thermal resistance – junction to	$R_{\theta JA}$			81		°C/W
ambient				See note 1		

Notes:

- 1. Figure given for package mounted on 4-layer FR4 according to JESD51-7. (No forced air flow is assumed).
- 2. Thermal performance figures are estimated.

WM8782

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range	DVDD	WM8782SEDS,	2.7		3.6	V
		WM8782SEDS/R				
Analogue supply range	AVDD	WM8782SEDS,	2.7		5.5	V
		WM8782SEDS/R				
Ground	DGND,AGND			0		V
Operating temperature range	T _A	WM8782SEDS,	-40		+85	°C
		WM8782SEDS/R				

Notes:

1. Digital supply DVDD must never be more than 0.3V greater than AVDD.

ELECTRICAL CHARACTERISTICS

Test Conditions

DVDD = 3.3V, AVDD = 5.0V, $T_A = +25$ °C, 1kHz signal, A-weighted, fs = 48kHz, MCLK = 256fs, 24-bit audio data, Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Performance - WM8782SED	S, WM8782SE	EDS/R (+25°C)				
Full Scale Input Signal Level (for ADC 0dB Input)				1.0		V _{rms}
Input resistance, using recommended external resistor network on p22.				10		kΩ
Input capacitance				20		pF
Signal to Noise Ratio (see Terminology note 1,2,4)	SNR	weighted, @ fs = 48kHz	93	100		dB
		Unweighted, @ fs = 48kHz		98		dB
		weighted, @ fs = 48kHz, AVDD = 3.3V		98		dB
Signal to Noise Ratio (see Terminology note 1,2,4)	SNR	weighted, @ fs = 96kHz		98		dB
		Unweighted, @ fs = 96kHz		98		dB
		weighted, @ fs = 96kHz AVDD = 3.3V		98		dB
Total Harmonic Distortion	THD	1kHz, -1dB Full Scale @ fs = 48kHz		-93		dB
		1kHz, -1dB Full Scale @ fs = 96kHz		-93		dB
		1kHz, -1dB Full Scale @ fs = 192kHz		-92		dB
Dynamic Range	DNR	-60dBFS	93	100		dB
Channel Separation (see Terminology note 4)		1kHz Input		90		dB
Channel Level Matching		1kHz signal		0.1		dB
Channel Phase Deviation		1kHz signal		0.0001		Degree
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp, applied to AVDD, DVDD		50		dB

Test Conditions

DVDD = 3.3V, AVDD = 5.0V, T_A = $+25^{\circ}C$, 1kHz signal, A-weighted, fs = 48kHz, MCLK = 256fs, 24-bit audio data, Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Logic Levels (TTL Levels)						
Input LOW level	V _{IL}				0.8	V
Input HIGH level	V _{IH}		2.0			V
Input leakage current – digital pad			-1	±0.2	+1	μΑ
Input leakage current – digital tristate input (Note 3)				85		μA
Input capacitance				5		pF
Output LOW	V_{OL}	I _{OL} =1mA			0.1 x DVDD	V
Output HIGH	V_{OH}	I _{OH} = -1mA	0.9 x DVDD			V
Analogue Reference Levels						
Midrail Reference Voltage	VMID	AVDD to VMID and VMID to VREFN	-4%	AVDD/2	+4%	V
Potential Divider Resistance	R _{VMID}			70		kΩ
Buffered Reference Voltage	VREFP		-4%	AVDD/2	+4%	V
VREF source current	I_{VREF}				5	mA
VREF sink current	I _{VREF}				5	mA
Supply Current						
Analogue supply current		AVDD = 5V		26		mA
Digital supply current		DVDD = 3.3V		5		mA
Power Down				0.5		mA

Notes:

- All performance measurements are done with a 20kHz low pass filter, and where noted an A-weight filter. Failure to
 use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the
 Electrical Characteristics. The low pass filter removes out of band noise; although this is not audible, it may affect
 dynamic specification values.
- 2. VMID is decoupled with 10uF and 0.1uF capacitors close to the device package. Smaller capacitors may reduce performance.
- 3. This high leakage current is due to the topology of the instate pads. The pad input is connected to the midpoint of an internal resistor string to pull input to vmid if undriven.

TERMINOLOGY

- Signal-to-noise ratio (dB) Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, over a 20Hz to 20kHz bandwidth. (No Auto-zero or Automute function is employed in achieving these results).
- 2. Dynamic range (dB) DR is a measure of the difference between the highest and lowest portions of a signal. Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- 4. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.

SIGNAL TIMING REQUIREMENTS

SYSTEM CLOCK TIMING

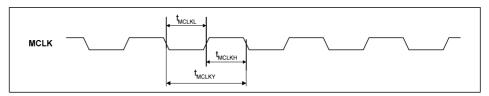


Figure 1 System Clock Timing Requirements

Test Conditions

 $\label{eq:decomposition} \text{DVDD} = 3.3\text{V}, \, \text{DGND} = 0\text{V}, \, \text{T}_{\text{A}} = +25^{\circ}\text{C}, \, \text{fs} = 48\text{kHz}, \, \text{Slave Mode, MCLK} = 256\text{fs}, \, 24\text{-bit data, unless otherwise stated}.$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
System Clock Timing Information					
MCLK System clock pulse width high	T _{MCLKL}	11			ns
MCLK System clock pulse width low	T _{MCLKH}	11			ns
MCLK System clock cycle time	T _{MCLKY}	28			ns
MCLK duty cycle	T _{MCLKDS}	40:60		60:40	

Table 1 Master Clock Timing Requirements

AUDIO INTERFACE TIMING - MASTER MODE

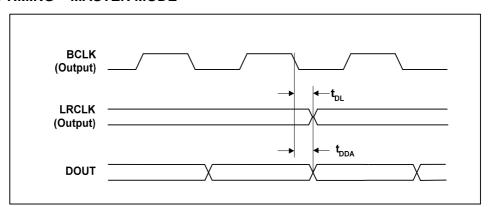


Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)

Test Conditions

 $DVDD = 3.3V, DGND = 0V, T_A = +25^{\circ}C, Master Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
LRCLK propagation delay from BCLK falling edge	t _{DL}	0		10	ns
DOUT propagation delay from BCLK falling edge	t_{DDA}	0		10	ns

Table 2 Digital Audio Data Timing – Master Mode

AUDIO INTERFACE TIMING - SLAVE MODE

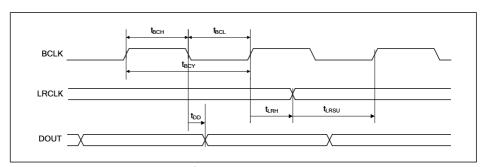


Figure 3 Digital Audio Data Timing – Slave Mode

Test Conditions

 $DVDD = 3.3V, DGND = 0V, T_A = +25^{\circ}C, Slave\ Mode, fs = 48kHz, MCLK = 256fs, 24-bit\ data, unless\ otherwise\ stated.$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
BCLK cycle time	t _{BCY}	50			ns
BCLK pulse width high	t _{BCH}	20			ns
BCLK pulse width low	t _{BCL}	20			ns
LRCLK set-up time to BCLK rising edge	t _{LRSU}	10			ns
LRCLK hold time from BCLK rising edge	t _{LRH}	10			ns
DOUT propagation delay from BCLK falling edge	t _{DD}	0		10	ns

Table 3 Digital Audio Data Timing - Slave Mode

Note:

LRCLK should be synchronous with MCLK.

SLAVE MODE MCLK / BCLK TIMING

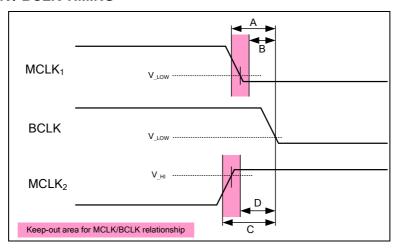


Figure 4 MCLK / BCLK prohibited timing relationship in slave mode

TIMING	TIME (ns)	DESCRIPTION
Α	9	MCLK falling adap to DCLK falling adap keep out window
В	4	MCLK falling edge to BCLK falling edge keep-out window
С	9	MCLIX riging adds to DCLIX follows adds keep out window
D	4	MCLK rising edge to BCLK falling edge keep-out window

Table 4 Prohibited area timings

In slave mode operation, there are two windows where the BCLK falling edge relative to the MCLK falling/rising edge is not allowed, as defined in Figure 4 and Table 4. Any device with clocks operating in this area may cause incorrect operation of the ADC, as detailed in WTR0444.

This specification is guaranteed by design rather than test, and the timings are related to the switching level of the MCLK and BCLK pads. Simulation has shown the switching level range for both the MCLK and BCLK pads across process, voltage and temperature to be as per the table below.

SWITCHING LEVEL	MIN (V)	MAX (V)
$V_{_LOW}$	1.1	1.4
V _HI	1.3	1.6

Table 5 Simulated switching area range

If the above timing constraints cannot be met in slave mode, it is recommended that WM8782A silicon is used in place of WM8782.

DEVICE DESCRIPTION

INTRODUCTION

The WM8782 is a stereo 24-bit ADC designed for demanding recording applications such as DVD recorders, studio mixers, PVRs, and AV amplifiers. The WM8782 consists of stereo line level inputs, followed by a sigma-delta modulator and digital filtering.

The device offers stereo line level inputs along with two control input pins (FORMAT, IWL) to allow operation of the audio interface in three industry standard modes (left justified, right justified or l^2S). An internal op-amp is integrated on the front end of the chip to accommodate analogue input signals greater than $1V_{rms}$. The device also has a high pass filter to remove residual DC offsets.

The WM8782 offers Master or Slave mode clocking schemes. A control input pin M/S is used to allow Slave mode or Master mode operation. The WM8782 supports master clock rates from 128fs to 768fs and digital audio output word lengths from 16-24 bits. Sampling rates from 8kHz to 192kHz are supported, delivering high SNR operating with 128x, 64x or 32x over-sampling, according to the sample rate.

The line inputs are biased internally through the operational amplifier to V_{MID} .

ADC

The WM8782 uses a multi-bit over sampled sigma-delta ADC. A single channel of the ADC is illustrated in Figure 5.

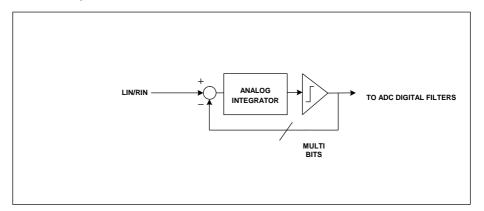


Figure 5 Multi-Bit Oversampling Sigma Delta ADC Schematic

The use of multi-bit feedback and high oversampling rates reduces the effects of jitter and high frequency noise.

The ADC Full Scale input is 1.0V rms at AVDD = 5.0 volts. Any input voltage greater than full scale will possibly overload the ADC and cause distortion. Note that the full scale input has a linear relationship with AVDD. The internal op-amp and appropriate resistors can be used to reduce signals greater than 1Vrms before they reach the ADC.

The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data from the ADC to the correct sampling frequency to be output on the digital audio interface.

ADC OUTPUT PHASE

In the input to output data-path, the digital output data DOUT, is a phase inverted representation of the analogue input signal.

ADC DIGITAL FILTER

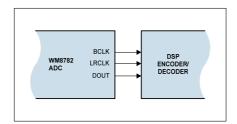
The ADC digital filters contain a digital high pass filter. The high-pass filter response detailed in Digital Filter Characteristics. The operation of the high pass filter removes residual DC offsets that are present on the audio signal.

•

DIGITAL AUDIO INTERFACE

The digital audio interface uses three pins:

- DOUT: ADC data output
- LRCLK: ADC data alignment clock
- BCLK: Bit clock, for synchronisation


The digital audio interface takes the data from the internal ADC digital filters and places it on DOUT and LRCLK. DOUT is the formatted digital audio data stream output from the ADC digital filters with left and right channels multiplexed together. LRCLK is an alignment clock that controls whether Left or Right channel data is present on the DOUT line. DOUT and LRCLK are synchronous with the BCLK signal with each data bit transition signified by a BCLK high to low transition. DOUT is always an output. BCLK and LRCLK maybe an inputs or outputs depending whether the device is in Master or Slave mode. (see Master and Slave Mode Operation, below).

Three different audio data formats are supported:

- Left justified
- Right justified
- I²S

MASTER AND SLAVE MODE OPERATION

The WM8782 can be configured as either a master or slave mode device. As a master device the WM8782 generates BCLK and LRCLK and thus controls sequencing of the data transfer on DOUT. In slave mode, the WM8782 responds with data to clocks it receives over the digital audio interface. The mode can be selected by setting the MS input pin (see Table 6 Master/Slave selection below). Master and slave modes are illustrated below.

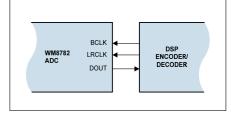


Figure 6 Master Mode

Figure 7 Slave Mode

PIN	DESCRIPTION
M/S	Master/Slave Selection
	0 = Slave Mode
	1= Master Mode

Table 6 Master/Slave selection

AUDIO INTERFACE CONTROL

The Input Word Length and Audio Format mode can be selected by using IWL and FORMAT pins.

PIN	DESCRIPTION
IWL	Word Length
	0 = 16 bit
	1 = 20 bit
	Z = 24 bit
FORMAT	Audio Mode Select
	0 = RJ
	1 = LJ
	Z = I2S

Table 7 Audio Data Format Control

AUDIO DATA FORMATS

In Left Justified mode, the MSB is available on the first rising edge of BCLK following an LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.

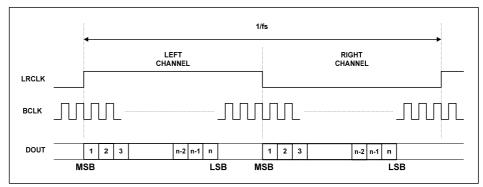


Figure 8 Left Justified Audio Interface (assuming n-bit word length)

In Right Justified mode, the LSB is available on the last rising edge of BCLK before an LRCLK transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.

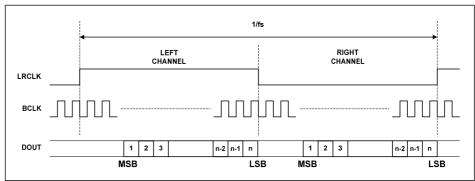


Figure 9 Right Justified Audio Interface (assuming n-bit word length)

In I²S mode, the MSB is available on the second rising edge of BCLK following an LRCLK transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of the next.

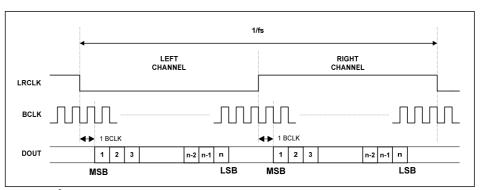


Figure 10 I²S Audio Interface (assuming n-bit word length)

MASTER CLOCK AND AUDIO SAMPLE RATES

In a typical digital audio system there is only one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's Master Clock (MCLK). The external master system clock can be applied directly through the MCLK input pin. In a system where there are a number of possible sources for the reference clock it is recommended that the clock source with the lowest jitter be used to optimise the performance of the ADC.

The master clock is used to operate the digital filters and the noise shaping circuits. The WM8782 supports master clocks of 128fs, 192fs, 256fs, 384fs, 512fs and 768fs, where fs is the audio sampling frequency (LRCLK). In Slave Mode, the WM8782 automatically detects the audio sample rate. In Master Mode, LRCLK is generated for rate 256fs, unless the user changes this to 128fs using the FSAMPEN pin = z (see Table 9 below). BCLK is also generated in Master Mode. BCLK=MCLK/4 for 256fs, and BCLK=MCLK/2 for 128fs.

SAMPLING RATE	Master Clock Frequency (MHz)					
(LRCLK)	128fs 192fs 256fs 384fs 512fs 7					768fs
8kHz	1.024	1.536	2.048	3.072	4.096	6.144
16kHz	2.048	3.072	4.096	6.144	8.192	12.288
32kHz	4.096	6.144	8.192	12.288	16.384	24.576
44.1kHz	5.6448	8.467	11.2896	16.9340	22.5792	33.8688
48kHz	6.144	9.216	12.288	18.432	24.576	36.864
96kHz	12.288	18.432	24.576	36.864	-	-
192kHz	24.576	36.864	-	-	-	-

Table 8 Master Clock Frequency Selection

In Slave mode, the WM8782 has a master detection circuit that automatically determines the relationship between the master clock frequency and the sampling rate (to within +/- 32 system clocks). If there is a greater than 32 clocks error the interface sets itself to the highest rate available (768fs). There must be a fixed number of MCLKS per LRCLK, although the WM8782 is tolerant of phase variations or jitter on these clocks.

FSAMPEN

The FSAMPEN pin controls the over sampling rate of the ADC. The WM8782 can operate at sample rates from 8kHz to 192kHz. The WM8782 uses a sigma-delta modulator that operates at an optimal frequency of 6.144MHz.

By default the WM8782 generates the ADC frequency at 128xOSR. At fs=48kHz, the ADC frequency is 128xOSR = 128x48kHz = 6.144MHz.

If fs=96KHz, the FSAMPEN pin must be set to 1. In this case, the ADC frequency is 64xOSR = 64x96kHz = 6.144MHz.

If fs=192KHz, the FSAMPEN pin must be set to z. In this case, the ADC frequency is 32xOSR = 32x192kHz = 6.144MHz.

It is recommended that the above settings are used for both master and slave mode.

PIN	DESCRIPTION
M/S	Master/Slave Selection
	0 = Slave Mode (128fs, 192fs, 256fs, 384fs, 512fs, 768fs)
	1= Master Mode (256fs, 128fs when FSAMPEN=z)
FSAMPEN	Fast sampling rate enable
	0 = 48ken (128x OSR)
	1= 96ken (64x OSR)
	z= 192ken (32x OSR)

Table 9 Master/Slave and Sampling Rate Enable Selection

POWER DOWN CONTROL

The WM8782 can be powered down by stopping MCLK. Power down mode using MCLK is entered after 65536/fs clocks. On power-up, the WM8782 applies the power-on reset sequence described below.

When MCLK is stopped DOUT is forced to zero.

POWER ON RESET



Figure 11 Power Supply Timing Requirements – Power-on

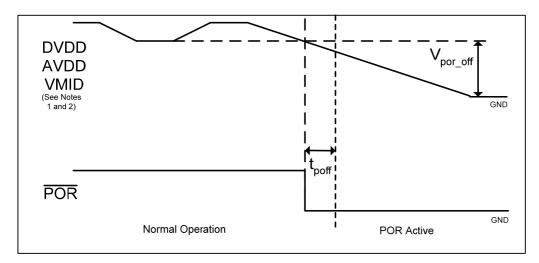


Figure 12 Power Supply Timing Requirements – Power-down

WM8782

Test Conditions

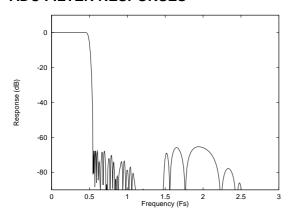
AVDD = 5V, DVDD = 3.3V, AGND = DGND = 0V, T_A = +25°C

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Input Timing I	Power Supply Input Timing Information					
DVDD level to activate POR – power on	V_{pora}	Measured from DGND		0.7		٧
AVDD level to activate POR – power on	V_{pora}	Measured from AGND		0.7		>
VMID level to activate POR – power on	V_{pora}	Measured from AGND		0.7		>
DVDD level to release POR – power on (see notes 1 and 2)	V_{porr}	Measured from DGND		DVDD Min		>
AVDD level to release POR – power on (see notes 1 and 2)	V_{porr}	Measured from AGND		AVDD Min		٧
VMID level to release POR – power on (see notes 1 and 2)	V_{porr}	Measured from AGND		1		٧
POR active period (see notes 1 and 2)	t _{por}	Measured from POR active to POR release	30 (note 6)	Defined by DVDD/AVDD/ VMID Rise Time		μ\$
DVDD level to activate POR – power off (see note 5)	V_{por_off}	Measured from DGND		0.8		V
AVDD level to activate POR – power off (see note 5)	V_{por_off}	Measured from AGND		0.8		٧
VMID level to activate POR – power off (see note 5)	V_{por_off}	Measured from AGND		0.7		>
Power on – POR propagation delay through device	t _{pon}	Measured from rising EDGE of POR		30		μ\$
Power down – POR propagation delay through device	t _{poff}	Measured from falling EDGE of POR		30		μS

Notes:

- POR is activated when DVDD or AVDD or VMID reach their stated V_{pora} level (Figure 11) POR is only released when DVDD and AVDD and VMID have all reached their stated V_{porr} levels (Figure 11).
- The rate of rise of VMID depends on the rate of rise of AVDD, the internal 50kΩ resistance and the external decoupling capacitor. Typical tolerance of 50K resistor can be taken as +/-20%.
- If AVDD, DVDD or VMID suffer a brown-out (i.e. drop below the minimum recommended operating level but do not go below $V_{\text{por_off,}}$, then the chip will not reset and will resume normal operation when the voltage is back to the recommended level again.
- The chip will enter reset at power down when AVDD or DVDD or VMID falls below V_{por_off}. This may be important if the supply is turned on and off frequently by a power management system.
- The minimum tpor period is maintained even if DVDD, AVDD and VMID have zero rise time. This specification is guaranteed by design rather than test.

Production Data


DIGITAL FILTER CHARACTERISTICS

The WM8782 digital filter characteristics scale with sample rate.

PARAMETER TEST CONDITION		MIN	TYP	MAX	UNIT	
ADC Sample Rate (Single Rate – 48Hz typically)						
Passband	+/- 0.01dB	0		0.4535fs		
	-6dB		0.4892fs			
Passband Ripple				+/- 0.01	dB	
Stopband		0.5465fs				
Stopband Attenuation	f > 0.5465fs	-65			dB	
Group Delay			22		fs	
ADC Sample Rate (Dual Rat	e – 96kHz typically)					
Passband	+/- 0.01dB	0		0.4535fs		
	-6dB		0.4892fs			
Passband Ripple				+/- 0.01	dB	
Stopband		0.5465fs				
Stopband Attenuation	f > 0.5465fs	-65			dB	
Group Delay			22		fs	

Table 10 Digital Filter Characteristics

ADC FILTER RESPONSES

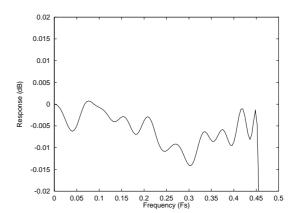


Figure 13 Digital Filter Frequency Response

Figure 14 ADC Digital Filter Ripple

ADC HIGH PASS FILTER

The WM8782 has a digital highpass filter to remove DC offsets. The filter response is characterised by the following polynomial.

$$H(z) = \frac{1 - z^{-1}}{1 - 0.9995z^{-1}}$$

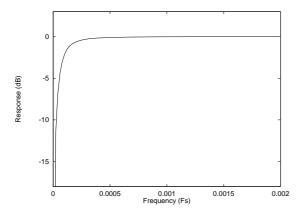
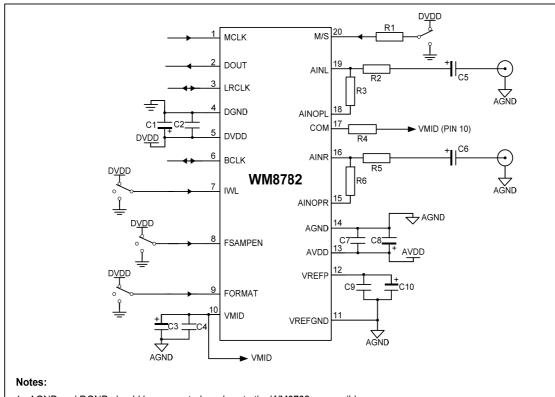



Figure 15 ADC Highpass Filter Response

APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

- 1. AGND and DGND should be connected as close to the WM8782 as possible.
- 2. C2, C4, C7 and C9 should be positioned as close to the WM8782 as possible.
- 3. Capacitor types should be carefully chosen. Capacitors with very low ESR are recommended for optimum performance
- 4. R2/R3 & R5/R6 should be chosen to select the gain of the input op-amp.

Figure 16 External Components Diagram

RECOMMENDED EXTERNAL COMPONENTS VALUES

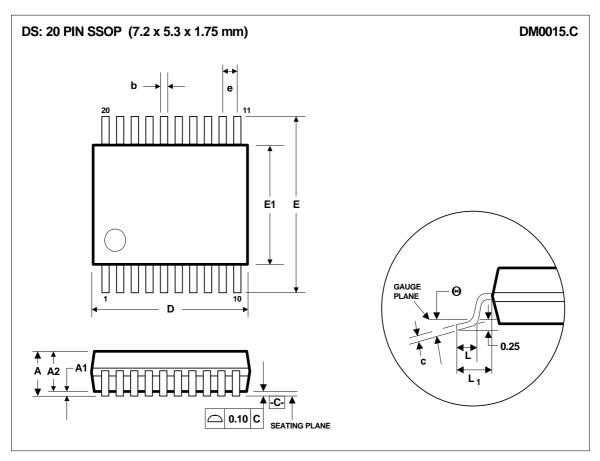

COMPONENT REFERENCE	SUGGESTED VALUE	DESCRIPTION	
C1 and C8	10μF	De-coupling for DVDD and AVDD	
C2 and C7	0.1μF	De-coupling for DVDD and AVDD	
C5 and C6	10μF	Analogue input AC coupling caps	
R1	10kΩ	Current limiting resistors	
R2 and R5	10kΩ	Internal op-amp input resistor	
R3 and R6	5kΩ	Internal op-amp feedback resistor	
R4	3.3kΩ	Common mode resistor	
C4	0.1μF	Reference de-coupling capacitors for VMID pin	
C3	10μF		
C9	0.1μF	Reference de-coupling capacitors for VREFP pin	
C10	10μF		

Table 11 External Components Description

The above Table 11 shows resistor values which will give a gain of 0.5. This assumes an input signal of 2Vrms to C4 and C5

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)				
	MIN NOM MAX				
Α			2.0		
\mathbf{A}_1	0.05				
A_2	1.65	1.75	1.85		
b	0.22	0.30	0.38		
С	0.09		0.25		
D	6.90	7.20	7.50		
е	0.65 BSC				
E	7.40	7.80	8.20		
E ₁	5.00	5.30	5.60		
L	0.55	0.75	0.95		
L ₁	1.25 REF				
θ	0°	4°	8°		
REF:	JEDEC.95, MO-150				

- A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.
 B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.
 C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.
 D. MEETS JEDEC.95 MO-150, VARIATION = AE. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.

Production Data